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Alberto Garcia-Ortiz, and Claas Falldorf

The coherence function and its information
content for optical metrology
Die Kohärenzfunktion und ihr Informationsgehalt für die optische Messtechnik

Abstract: The coherence function offers new possibili-
ties for optical metrology that are not available with con-
ventional wave field sensing. Its measurement involves a
spatio-temporal sampling of the wave fields modulated
by the object under investigation. Temporal sampling is
well known e. g. by means of White Light Interferometry
(WLI) and spatial sampling can e. g. performed by Com-
putational Shear Interferometry (CoSI). The present pa-
per describes an approach that combines both tempo-
ral and spatial sampling using a robust common-path
setup. While the evaluation of the coherence function is
more elaborate than approaches that either sample the
temporal or the spatial domain, an information theoret-
ical treatment shows that it also delivers more informa-
tion about the object under investigation. Our approach is
based on the mutual information that represents the re-
duction of uncertainty about the object as a consequence
of the measurements performed. Using a simplified mea-
surement case, we calculate the mutual information for
different measurement situations and demonstrate that
spatio-temporal sampling of the coherence function re-
sults in a highermutual information as compared to classi-
cal approaches. Based on theproposed approach,we iden-
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tify further open research tasks for an efficient information
extraction from the coherence function to surpass current
limitations of optical metrology.

Keywords: Optical metrology, interferometry, computa-
tional shear interferometry, coherence, spatio-temporal
sampling, information, transinformation, compressed
sensing.

Zusammenfassung: Die Kohärenzfunktion bietet neue
Möglichkeiten für die optische Messtechnik, die mit kon-
ventioneller Wellenfeldsensorik nicht verfügbar sind. Die
Messung der Kohärenzfunktion beinhaltet eine raum-
zeitliche Abtastung der vom Messobjekt veränderten Wel-
lenfelder. Die zeitliche Abtastung z. B. mittelsWeißlichtin-
terferometrie (WLI) ist wohlbekannt, eine räumliche Ab-
tastung kann z. B. mittels Computational Shear Interfe-
rometry (CoSI) erfolgen. Die vorliegende Veröffentlichung
beschreibt einenAnsatz, der sowohl eine zeitliche als auch
eine räumliche Abtastung mit einem robusten Common-
Path-Aufbaukombiniert.WährenddieAuswertungder Ko-
härenzfunktion aufwändiger ist als Ansätze, die entwe-
der eine zeitliche oder eine räumliche Domäne abtasten,
zeigt eine informationstheoretische Betrachtung, dass sie
auchmehr Informationen über das Messobjekt liefert. Un-
ser Ansatz basiert auf der Transinformation, die die Ver-
ringerung der Unsicherheit über das Messobjekt als Fol-
ge der durchgeführten Messungen darstellt. Anhand einer
vereinfachten Messsituation berechnen wir die Transin-
formation für verschiedene Messsituationen und zeigen,
dass die raum-zeitliche Abtastung der Kohärenzfunktion
im Vergleich zu klassischen Ansätzen zu einer höheren
Transinformation führt. Basierend auf dem vorgeschlage-
nen Ansatz identifizieren wir weitere offene Forschungs-
fragen für eine effiziente Informationsextraktion aus der
Kohärenzfunktion, umderzeitige Beschränkungen der op-
tischen Messtechnik zu überwinden.

Schlagwörter: Optische Messtechnik, Interferometrie,
Computational Shear Interferometry, Kohärenz. Raum-
zeitliche Abtastung, Information, Transinformation, Com-
pressed Sensing.
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1 Introduction

Conventional interferometric measurement methods de-
termine the phase or complex amplitude of a quasi-
monochromatic optical wave field. Within scalar diffrac-
tion theory, light is described by means of the time-
dependent complex amplitude, a scalar function U(x⃗, t)
which depends on space x⃗ and time t. Except for the polar-
ization state, it contains all information of the wave field
but cannot be measured directly because its oscillation in
time is too fast for any detector based on electronics.

The time-independent complex amplitudeU(x⃗) is usu-
ally briefly referred to as the complex amplitude. It can be
measured by its correlation with a reference wave R(x⃗, t)
with the same temporal dependence by evaluating the in-
tensity

I = (U∗ + R)(U + R∗) = |U |2 + |R|2 + 2R{U∗R} (1)

using a suitable detector, typically a CCD or CMOS cam-
era. Here, R stands for the real part of U∗R. The complex
amplitude is onlywell defined in themonochromatic case,
because the referencewaveRhas to follow the time depen-
dence ofU which can only be realized at any point in space
in a monochromatic regime.

In order to considerably expand the possibilities of
interferometric measurement technology, we widen our
scope to the coherence function of light Γ(x⃗1, x⃗2, τ) that de-
scribes the covariance of the wave field at different loca-
tions x⃗1 and x⃗2 and a time shift τ. It is, for a time-dependent
wave field U(x⃗, t) given by

Γ(x⃗1, x⃗2, τ) = ⟨U
∗(x⃗1, t)U(x⃗2, t + τ)⟩T

= lim
T→∞ 1

T

t=T/2
∫

t=−T/2 U∗(x⃗1, t)U(x⃗2, t + τ) dt, (2)

with the time average ⟨ ... ⟩T defined at the right side of
the equation [1]. This description is valid, when the light
is stationary, as it is the case in most metrology applica-
tions. Using the Γ-function allows us, however, not only
to analyze a monochromatic wave field, but also partly
coherent wave fields consisting of polychromatic light
and even several independent light fields present at the
same time. It can therefore be expected that using the
Γ-function a higher degree of information can be obtained
from optical measurements as compared to conventional
wave field measurements. However, this advantage comes
with a price: The Γ-function in the most general case
maps a 7-dimensional (7D) space spanned by x⃗1, x⃗2 and
τ to a complex-valued function. As light fields are usu-
ally detected using planar detectors, the space vectors x⃗1
and x⃗2 provide two dimensions each so that the detected
Γ-function has a maximum of 5 dimensions.

We will start our discussion by determining a
monochromatic wave function using the well known
Michelson interferometry and then expand the discus-
sion to the determination of the Γ-function by the use
of Γ-Profilometry, a concept that will be introduced in
greater detail later on. The discussion follows the lead-
ing question: Is the measurement of the Γ-function more
informative as compared to measuring the wave function?

Figure 1 shows a simplified scheme of a Michelson in-
terferometer that is frequently used for high precision op-
tical metrology. In the highly idealized setting we disre-
gard limiting effects such as diffraction, aberration or devi-
ations from ideal plane waves. The observation plane cor-
responds to the x-axis. For simplicity,we assumea stepped
surface with the step located at the z-axis along y =0
and a step height of Δh as shown in Fig. 1(a). The mea-
surement task is to determine the step height Δh that in-
creases the optical path lengthwith respect to light coming
from a higher point of the sample surface corresponding

Figure 1: (a) Schematic drawing of a Michelson interferometer. The object wave interferes with the reference wave producing an intensity I(x)
at the detector. For simplicity, we assume that the paths that both reference and object wave coming from the plane that incorporates x2 are
identical. (b) Dependence of the intensity I(x1) on Δh scaled by the wavelength λ.
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to x2 at the observation plane compared to light coming
from a lower part corresponding to x1 at the observation
plane by 2Δh resulting in a time delay of δτ = 2Δh/c. In
the setup (from right to left), monochromatic light is split
in two parts, an object wave U and a reference wave R. In
the general case, the path difference of object and refer-
ence arm is variable and is the sum of four components: A
length Δl that allows to introduce a phase shiftϕ = 2π Δl/λ,
an adjustment error δli intrinsic to themeasurement setup,
an error δle introduced by external effects and a length
ϵ corresponding to noise. In practical applications, δle is
mainly caused by vibrations, a dominant concern for pre-
cisemeasurements. Thewaves coming from these arms in-
terfere with each other at the detector plane.

For the dependence shown in Fig. 1(b), we neglect the
above mentioned length differences and assume that the
path for the light of the object beam traveling from x2 to
the detector has the same length as that of the reference
wave and therefore results in a constant maximum inten-
sity I at the detector. The length of the path of the light
from x1, however, depends on Δh and leads to the depen-
dence of the intensity I(x1) at the detector as shown in
Fig. 1(b). The relation between reference wave and object
wave arriving from x1 at the detector can thus be described
by U(x1 − 2Δh) = R(x1). The interference term R{U∗R} in
Eq. 1 is thus given by the real part of a correlation function
U∗(x1)U(x1 − 2Δh), which is a correlation of U(x⃗, t)with it-
self.

As a note important for the following line of argu-
ments, please observe that the Michelson interferometer
in the general case measures the temporal correlation ex-
pressed by

Γ(x⃗, δτ) = ⟨U∗(x⃗, t)U(x⃗, t + δτ)⟩T . (3)

with a time shift δτ resulting from the combined effect of
Δh, Δl, δli, δle and ϵ as discussed above.

We will now extend our discussion to the concept of
Γ-Profilometry. Figure 2 shows a simplified Γ-Profilometry
setup [2] that comprises a temporal sampling unit and
a spatial sampling unit. The common path configuration
uses in its temporal sampling unit a Soleil-Babinet com-
pensator as part of a 4f -configuration that, dependent on
the polarization set by the upper polarizer, creates two
wavefronts with a temporal shift Δτ with respect to each
other. The spatial sampling unit consists of a computa-
tional shear interferometer that uses a spatial light modu-
lator within a 4f -configuration to create a spatial shift, the
so called shear ⃗s, between two images that interfere at the
CCD camera, once the polarization is properly set by the

polarizer at the right side of the figure. The setup therefore
samples the coherence function

Γ(x⃗, x⃗ + ⃗s,Δτ) = ⟨U∗(x⃗, t)U(x⃗ + ⃗s, t + Δτ)⟩T
= U∗(x⃗)U(x⃗ + ⃗s,Δτ). (4)

and allows to independently adjust Δτ and ⃗s for sampling
the temporal and the spatial correlation, respectively. As
there is no reference arm as in the case of the Michelson
interferometer, errors only arise from errors in the setting
of Δτ by the Soleil-Babinet compensator, errors in setting
the shear ⃗s and noise represented by a suitable ϵ. Due to
the common path principle, an otherwise often dominat-
ing error due to vibrations (comparable to δle) does not ex-
ist.

Figure 3 schematically illustrates the situation for a
Δτ-s plane where the multi-dimensional Δτ- ⃗s space is re-
duced to a plane with a scalar s for simplicity. Although ⃗s
is in principle a vector in three dimensions, we restrict ⃗s
to a two-dimensional vector within the observation plane
since a shift-component outside this plane would corre-
spond to a temporal shift in non-dispersive media (com-
pare the corresponding argument for the Michelson setup
in Fig. 1).

Techniques such as White Light Interferometry
(WLI), Computational Shear Interferometry (CoSI) and
Γ-Profilometry appear well suited to probe subsamples
of the Γ-function and have already been extensively ex-
plored by the authors [2–6]. Concerning the coherence
properties of the light, shear interferometry merely de-
mands the spatial coherence to be larger than the shear.
The spatial coherenceprovidedby light sources commonly
used for WLI, e. g. light emitting or super-luminescence
diodes (LEDs or SLDs), in general meets these demands
[2].

A systematic investigation of the advantages of the
Γ-function over conventional wave field measurements in
terms of information content and sampling efficiency has
not yet been conducted. Using WLI, light coming from an
observation plane is detected using a time shift along the
vertical Δτ-axis. The horizontal axis of Fig. 3 represents
spatial sampling using CoSI. Here, light comes from an ob-
servation plane that is shifted against itself by a vector ⃗s.
Finally, Γ-Profilometry enables sampling of the complete
Δτ- ⃗s space as shown in Fig. 3 by simultaneously using Δτ
and ⃗s to shift the observation plane in time and space. The
gray areas in the Δτ-s plane schematically represent the
fraction of the Δτ- ⃗s space used for sampling by the ap-
proaches described above.

In the case ofWLI as an example, any uncertainty that
is caused by a reference arm, e. g. deviations of the refer-
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Figure 2: Simplified Γ-Profilometry setup. Light from the object is captured by the left unit, a 4f -configuration formed by the two lenses in
the left box. This temporal sampling unit enables temporal sampling by use of a Soleil-Babinet compensator that allows to introduce a time
shift Δτ between the two differently polarized parts of the beam. The right box, the spatial sampling unit, consists of a shear interferom-
eter (for simplicity in an unfolded configuration) based on a spatial light modulator (SLM) that allows to create an adjustable shear s⃗. The
second 4f -configuration is again formed by two lenses. The setup thus allows to sample the Δτ-s⃗-space. Due to the common-path principle
employed, the setup is fairly insensitive with respect to vibrations. For further description of the optical setup and its use see [2].

Figure 3: Schematic representation of the Δτ-s⃗ parameter space reduced to a Δτ-s plane. Gray areas schematically indicate the parameter
space of measurements with i) White Light Interferometry (WLI) representing Δτ-scanning, ii) Computational Shear Interferometry (CoSI)
representing spatial scanning along the shear-axis and iii) Γ-Profilometry sampling the whole Δτ-s plane using Δτ and s⃗ as variable mea-
surement parameters. A complete measurement combines the analysis of the data from all measurements indicated by black dots within
the respective gray area. Note that this conceptual illustration is strongly simplified. Rather than a scalar value, each sampling concerns
the whole measurement plane providing information about the different parameters of the object. The information provided by a set of
sampling points is not additive, but a complex function that depends on the correlation of the different points which cannot be evaluated
individually.

ence mirror from a perfect flat (to just mention a trivial
cause for simplicity), is always fully correlated with the
entire object light and therefore affects the entire object.
We can thus not distinguish between errors invoked by
the reference arm and the actual topography of the ob-
ject, no matter how many measurements we perform. In
Γ-Profilometry however, we compare different regions of
the object. Although the imaging system can also create
unwanted deviations, we can easily separate them from
the object information by performing measurements with

different shears. Deviations which remain constant for dif-
ferent shears will not be regarded as object information
through the reconstruction process. This is an intrinsic in-
formation advantage of the coherence function because
the object information is encoded during multiple mea-
surements and can thus be distinguished from artifacts
created from the optical measurement system.

One of the major benefits of sampling the coherence
function is therefore that only light returning from the ob-
ject is investigated. All the collected information is based
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Figure 4: Idealized measurement situation for step height determination. (a) Surface with a step of height Δh at z = 0 and further steps in-
dicated by further measurement points xn. Dashed lines: incident wave front, black line: wave front reflected from lower part of the surface,
gray line: wave front reflected from upper part of the surface. (b) Phase difference Δφ of the two reflected wave fronts with wave number
k. Phase differences differing by multiples of 2π can not be distinguished. (c) Using poly chromatic light with a suitable coherence time τc
allows to uniquely evaluate the step height Δh from the shift Δτ of the two Γ-functions. For further details see text.

on correlations between light reflected by one area of the
objectwith light fromanother area. The choice of the shear
⃗s thus introduces an important additional degree of free-
dom.

We will now describe several cases of optical metrol-
ogy based on the above discussion using temporal as well
as spatio-temporal sampling. Using concepts from infor-
mation theory, we demonstrate that spatio-temporal sam-
pling deliversmore information content thanapproaches re-
stricted to sample either over space or time.

2 Measurements with
monochromatic, polychromatic
and multiple light sources

Figure 4 shows an extension of the simplified measure-
ment situation of the Figs. 1 and 2. Using the geome-
try shown in Fig. 4(a), we describe how to calculate the
wave field and the coherence function for the cases of
monochromatic and polychromatic light. As indicated in
Fig. 4(b), the use of monochromatic light frequently cre-
ates ambiguities in the determination of the step height Δh
from a phase shift Δϕ which can be overcome by measur-
ing the time shift Δτ of the maximum obtained from the
use of polychromatic light, see Fig. 4(c). We first discuss
the task ofmeasuring a single step height and later on gen-
eralize it for many steps by introducing more points x⃗n. A
continuous surface profile can be dealt with by adding fur-
ther points x⃗n and assume n → ∞. The mathematical re-
sults obtained from these situations are used later on in

Section 3 to determine the information content of themea-
surements.

2.1 Measurement of a step height using
monochromatic light

Using a monochromatic plane wave

U(z, t) = u0 ⋅ exp [i(kz − ωt)] (5)

with the amplitude u0, the magnitude k of the vector in
z-direction and the angular frequencyω that is reflected at
the surface, a phase shift is observed between light coming
from x⃗1 and x⃗2. Using a shear interferometer with the shear
⃗s set according to the distance between the two points, the
amplitude results in

U(z, t) = u0
√2
(ei[kz+ωt+ϕ] + ei[k(z+2Δh)+ωt+ϕ])

=
u0
√2

ei(kz+ωt+ϕ) (1 + ei2kΔh) (6)

with an additional unknown, but common phase shift ϕ.
The factor √2 comes from the fact that the incoming field
is split in two equal parts. We calculate the measured in-
tensity

I(Δh) = |U ⋅U∗|2 = u20
2 [

2 + 2 cos(2kΔh)] = I0 [1 + cos(2kΔh)]
(7)

which reads after normalization

I(Δh)
I0
= 1 + cos(2kΔh). (8)

The step height thus creates a phase shift Δφ = 2kΔh be-
tween the two waves. The phase shift can be determined
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by using phase shifting techniques [7]. However, the peri-
odicity of the cos-term introduces an ambiguity given by
m 2π that results in ambiguous phase shifts

Δφn = 2k Δh +m 2π (9)

with m = 1, 2, 3, ... as can be seen in Fig. 4(b). As a con-
sequence of this ambiguity, step heights differing by m ⋅
λ/2 cannot be distinguished. This situation can be allevi-
ated by using a two-wavelength approach with a synthetic
wavelength of

Λ = λ1 ⋅ λ2
|λ1 − λ2|

. (10)

which extends the unambiguity range toΛ/2. A generaliza-
tion of this concept can be found in [8].

2.2 Measurement of a step height using
polychromatic light

Now we consider the use of polychromatic light. The rela-
tion between the waves reflected from the surface is evalu-
ated in the observation plane by measuring the coherence
function Γ(x⃗1, x⃗2, τ) as defined in Eq. 2. In many situations
the power spectral density S(ω) of the light source is a pri-
ori known. In this case, it is useful to determine the coher-
ence function by exploiting its Fourier relationship with
the cross spectral density (CSD) S(x⃗1, x⃗2,ω) given by

Γ(x⃗1, x⃗2, τ) =
∞
∫−∞ S(x⃗1, x⃗2,ω) ⋅ exp(iωτ) dω, (11)

see e. g. [9]. In [2] it is shown that spatial and spectral de-
pendencies of the CSD can be separated, if the light field at
the positions x⃗1 and x⃗2 shares the same spectral character-
istics. In our simple example we can assume this require-
ment to hold true and find

Γ(x⃗1, x⃗2, τ) =
∞
∫−∞ S(ω) ⋅ exp (iω [τ − Δτ(x⃗1, x⃗2)]) dω (12)

with

Δτ(x⃗1, x⃗2) =
{{{
{{{
{

2Δh/c for all x⃗1 = (x1, y1,0)with x1 ≥ 0 and
x⃗2 = (x2, y2,0)with x2 < 0

0 otherwise
(13)

according to the stepped surface defined in Fig. 4(a). Equa-
tion 12 resembles the Wiener-Khinchin theorem [9], but

with the time delay shifted by the additional time differ-
ence Δτ(x⃗1, x⃗2) which corresponds to the optical path dif-
ference between light reflected at the surface correspond-
ing to x⃗1 and x⃗2.We nowassume aGaussian power spectral
density of the wave field given by

S(ω) = Io
√2πΔω

exp(− (ω − ω0)
2

2Δω2 ) . (14)

with the total intensity of the distribution I0=∫
∞−∞ S(ω) dω,

the central frequency ω0 and the standard deviation Δω.
With the time τ that describes the time between sending
and receiving the wave front reflected from x⃗2 = x⃗1 ≤ 0
due to its propagation in the measurement setup and Δτ
given in Eq. 13, the time shift between the two waves com-
ing from x⃗1 and x⃗2 is τ − Δτ and the coherence function
results in

Γ(τ − Δτ) = I0 ⋅ exp (iω0 [τ − Δτ(x⃗1, x⃗2)])

⋅ exp (− 1
2 [
τ − Δτ(x⃗1, x⃗2)]

2 Δω2) . (15)

With the incoming intensity I0 being split into I0/2 =
I0(x⃗1) = I0(x⃗2), the real part of Γ that enters into the mea-
sured intensity

I(x⃗1, x⃗2, τ) = I0(x⃗1) + I0(x⃗2) +R{Γ(x⃗1, x⃗2, τ)} (16)

is given by

R (Γ) = I0 ⋅ cos (ω0 [τ − Δτ(x1, x2)])

⋅ exp (− 1
2 [
τ − Δτ(x⃗1, x⃗2)]

2 Δω2) . (17)

As a result, themeasured normalized intensity as function
of Δh is finally given by

I(Δh)
I0
= 1+cos [ω0 (τ −

2Δh
c
)]⋅exp [− 1

2
(τ − 2Δh

c
)
2
Δω2] ,

(18)
where we have inserted Δτ(x⃗1, x⃗2) = 2Δh/c in accordance
with the studied example and the speed of light c. Con-
sequently, sampling of a monochromatic wave field leads
to an ambiguity in the determination of a step height of
Δh ≤ λ/2, compare Eq. 7, or Λ/2 for the use of a synthetic
wavelength, or correspondingly higher values for multi-λ
approaches as discussed in the previous subsection. In
contrast, using the coherence function given in Eq. 15 al-
lows for an unambiguous determination of the step height
provided that the coherence time

τc =
2√2 ln2
Δω
, (19)
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is properly chosen. As is obvious from the equation above,
the coherence time τc depends on the choice of the spec-
tral width Δω of the light. Choosing a suitable value of τc
as schematically depicted in Fig. 4(c) allows to uniquely
determine the shift of the coherence function as a result
of the step height Δh. Using the Full Width Half Maximum
FWHM = 2√2 ln 2 Δω, Eq. 19 simplifies to τc = 1/FWHM.

For monochromatic light with Δω → 0 and thus τc →
∞ the normalized intensity results in

I(Δh)
I0
= 1 + cos [ω0 (τ −

2Δh
c
)] . (20)

For the case of a monochromatic wave, no gain of infor-
mation is obtained in using the Γ-function instead of the
wave field. The advantage of using the Γ-function arises,
as demonstrated above, for polychromatic light.

2.3 Measurements simultaneously using
several light sources

The evaluation of the determination of the Γ-function us-
ing several light sources simultaneously has been shown
in [6]. The light field thus reads

UG(x⃗, t) =∑
n
Un(x⃗, t) (21)

for n independent light fields. The Γ-function then results
in

Γ(x⃗1, x⃗2, t) = ⟨U
∗
G (x⃗1, t)UG(x⃗2, t)⟩T

= lim
T→∞ 1

T

T/2
∫−T/2 (∑n U∗n (x⃗1, t))(∑

m
Um(x⃗2, t)) dt.

(22)

Due to the fact that only light from a common source can
interfere we can use

⟨U∗n (x⃗1, t)Um(x⃗2, t)⟩T = δn,mU∗n (x⃗1)Um(x⃗2) (23)

to simplify the expression to

Γ(x⃗1, x⃗2) =∑
n
U∗n (x⃗1)Un(x⃗2), (24)

which can again be measured by a procedure based on a
shear interferometer as previously demonstrated [4]. We
do not exemplify this case here any further, as the geom-
etry of the employed light sources highly depends on the
measurement situation, which is beyond the scope of this
article. Measurement examples for the simultaneous use
of many light sources are described in [4].

3 Information content of wave field
and coherence function

A main goal of this paper is to compare from a fundamen-
tal point of view classical optical metrology techniques
with the 7D-metrology concept based on the Γ-function.
7D-metrology provides rich information about the dimen-
sions under measure, but at the same time requires a non-
trivial post-processing. In order to focus the comparison
at first w. r. t. the available information, an information-
based analysis of both measurement concepts is pre-
sented. Therefore, an information-based framework is de-
veloped that allows us not only to reason about the funda-
mental properties of different measurement options, but
also opens the possibility for using statistical learning and
compressed signal processing post-processing techniques
in future.

3.1 Concept of information content applied
to optical metrology

We are now interested in the information transfer from
the point of view of information theory. Figure 5 presents
a block diagram of the setup shown in Fig. 2 that sam-
ples a τ- ⃗s-space. To enable an analysis in terms of infor-
mation theory, we need to cast the problem in a proper
form. Information theory is concerned with the transfer
of information from a source (object) to a sink (process-
ing) through a channel (complete measurement system,
including the camera) as shown in Fig. 5. This information
transfer is best characterized by the so-called mutual in-
formation. The mutual information quantifies the amount
of information that can be transmitted through the mea-
surement system in a single number. In order to define it,
we first require an intermediate concept, the so-called dif-
ferential entropy. It uses the statistics of random variables
(e. g. Δh) to express the information content independent
of the specific statistical distribution. Hence, we start with
modeling the physical characteristics of the object, the op-
tical measurement system and the camera including any
measurement errors, then define the differential-entropy
and finally discuss the mutual information.

We now formalize the a priory knowledge about an
object with the help of a probability distribution. First,
we assume that the object is characterized by a set of pa-
rameters. Also, we assume the parameters to be random
variables G = {G0,G1, . . . ,Gn−1} ∼ pG(g⃗) with realizations
g⃗ = [g0, g1, . . . , gn−1], where pG(g⃗) denotes the probabil-
ity distribution. Note that the degree of a-priory knowl-
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Figure 5: Block diagram of a measurement chain based on Γ-Profilometry as a conceptual model for the information-theoretical description
of an optical metrology system. Light from the object with a step Δh is captured by a temporal and a spatial sampling unit that allow to sam-
ple the τ-s⃗-space. For further description of the optical setup and its use see [2]. The information theoretical modeling simplifies this optical
model to a probability density function (pdf) for the object parameters pG(g⃗), a conditional pdf pI|G( ⃗i|g⃗) and a pdf for the measurements
pI( ⃗i).
edge captured by this distribution can vary considerably
depending on the application. In some scenarios, almost
no prior knowledge may exist besides a rough idea of the
range of the parameterswhile in other scenarios, the infor-
mation can bemore precise. For example, itmay be known
that the objects under consideration are spherical lenses
with an aberration that can be described with the coeffi-
cients of the first Zernike polynomials.

From the viewpoint of Shannon’s information theory,
uncertainty about a random variable is equivalent to in-
formation. The less is known about the outcome of a ran-
dom experiment, say a coin flip, the more information is
inferred. This is easily understood in the context of com-
pression, where a stream of equally likely random charac-
ters cannot be compressed without loss of information. A
natural language text, however, leads to different proba-
bilities for different characters and is highly compressible
without loss of information. Hence, from an information
theoretical point of view pG(g⃗) determines the amount of
information of the source or the uncertainty about the ob-
ject (uncertainty in the general sense, not the measure-
ment uncertainty defined in the GUM). This leads us to the
differential entropy

ℍ(G) = −∫pG(g⃗) log2 pG(g⃗) dg⃗ , (25)

as an important figure ofmerit. The logarithm to base 2 de-
fines this quantity to be in unit bits (base e: nats, base 10:
hartley, otherwise). While the entropy of discrete random
variables is a measure of the quantitative average amount
of information, such a direct interpretation is not available
for the differential entropy of continuous random vari-
ables. A small differential entropy indicates the concentra-
tion in a small region in the space of the random variable,
whereas a large differential entropy indicates that the vari-
able is quite scattered. Hence, it is a useful figure of merit

to qualitatively compare the information content of differ-
ent objects. Further details on the fundamental concepts
of information theory and it’s measures can be found in
[10] and details about the differential entropy are outlined
in [11].

Now, we conceptualize the optical measurement sys-
tem as a random mappingM of any random variable, the
parameter, to any image of size Lx × Ly. A set of Lc im-
ages is then to be interpreted as a set of random vari-
ables I = {I0, I1, . . . , ILc−1} ∼ pI( ⃗i) with image realiza-
tions ⃗i = [i0, i1, . . . , iLc−1]. Thismappingwill likely be highly
non-linear and has to be considered random to take the
different sources of uncertainty during the measurement
process into account. That is, this mapping also includes
measurement errors at different levels of the chain shown
in Fig. 5, e. g. camera noise or vibrations. Statistically, it
is possible to characterize this mapping by a conditional
probability density function pI|G( ⃗i|g⃗) that describes the
probability of a set of images given a set of parameters.

To finally answer the question howmuch information
a set of measurements I contains about the parameters
G of the object, we now introduce the mutual informa-
tion I(G; I). The idea behind the mutual information is
to characterize the information common in both random
variables. Or in other words, the higher the mutual infor-
mation, themore uncertainty about G is reduced by know-
ing the measurements I and vice versa, so

I(G; I) = ℍ(G) −ℍ(G|I) = ℍ(I) −ℍ(I|G), (26)

where I andℍ are the mutual information and the condi-
tional differential entropy, respectively. In contrast to the
differential entropy discussed above, we now have a mea-
sure of the information about the object of interest that is
contained in a set of measurements. A higher number of
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bits means more information about the object’s statistical
model is preserved in the measurements.

The conditional differential entropy ℍ(G|I) follows
the same definition as in Eq. 25 and is defined by

ℍ(G|I) = −∫pI,G( ⃗i, g⃗) log2 pI|G( ⃗i|g⃗) dg⃗ d ⃗i , (27)

where pI,G( ⃗i, g⃗) is the joint distribution of the parameters
G and images I.1An intuitive interpretation of the second
half of Eq. 26 is that the mutual information is determined
by the differential entropyℍ(I) of the images reduced by
the conditional differential entropy ℍ(I|G) in the images
that is not included in the parameters (e. g. noise).

Note that the information theoretic description of the
measurement process does not include any statement
about the estimation of the parameters G. A high mutual
information shows that the measurements I are very in-
formative about the parameters G, but it does not tell how
to exploit this information. The estimation task, which is
solved by the block data processing as a part of the com-
plete information processing chain shown in Fig. 5, needs
to exploit the available measurement data. In the sim-
plest but also typical case, we are interested in an esti-
mate ̂g⃗ of the true value of the object parameters, which
can be achieved by classical estimation methods such as
minimum least squares estimation. Respective industry-
relevant examples are object properties like the surface
step height, a surface curvature or a surface roughness pa-
rameter. Additionally, we may be interested to derive val-
ues depending on ̂g⃗, e. g., a classification of objects into
‘good’ and ‘faulty’ parts that may require less information
than a full estimate of g⃗.

With the perspective on the estimation tasks described
above, which are in essence measurement tasks, from the
viewpoint of information theory, it is possible to investigate
and compare the potential of different measurement ap-
proaches regarding their fundamental information content
at first. In a second future step, which is beyond the scope of
this article, the extractable or accessible information con-
tent needs to be investigated. The aim is then to maximize
the ratio of the extractable information content and the ex-
isting information content, i. e. to maximize the estimation
efficiency or to determine a measurement uncertainty.

1 Overall, the mathematical expressions for the conditional differen-
tial entropy and the mutual information may be cumbersome and of-
ten cannot be solved analytically. Thus, approximations or numerical
integration are often required for calculation.

3.2 Illustration of entropy and probabilistic
object models

As an illustration, let us describe the application of the
previous framework to the problem of measuring a step
like in Fig. 4. The object is characterized by a single pa-
rameter, the step Δh. In the case that no a-priory knowl-
edge about the object is known, but only the range of
height variation, we can use a uniform distribution of Δh ∼
U(hmin, hmax). Note that while Δh is strictly denoted in me-
ters, information theory is only concerned with the prob-
ability density function of Δh. Therefore we express every
quantity in SI units without prefixes and ignore the unit in
the following calculations which simplifies our notation.
Then, the differential entropy isℍ(Δh) = log2(hmax −hmin).
For example, for hmax − hmin = 50 µm the differential en-
tropy of the source is

ℍ(Δh) = log2(50 ⋅ 10
−6) = −14.28 bits , (28)

whereas for hmax − hmin = λ/5 with λ = 500nm the differ-
ential entropy is

ℍ(Δh) = log2(100 ⋅ 10
−9) = −23.25 bits. (29)

As mentioned before the differential entropy cannot be in-
terpreted as the information content of a random variable.
However, a small differential entropy indicates the concen-
tration in a small region in the space of the random vari-
able,whereas a largedifferential entropy indicates that the
variable is quite scattered [11]. This is reflected by the fact,
that the result of Eq. 28 is larger than that of Eq. 29 due
to the smaller dimensions of the second example. Again,
this is in contrast to themutual information I(G; I) that de-
scribes the common information in two random variables
G and I.

To continue the modeling of Δh as a random vari-
able, we can also assume that some a-priory knowl-
edge exist. For example, with a Gaussian distribution
N(μh, σh) of known mean μh and standard deviation σh,
i. e. Δh ∼ N(μh, σh), the differential entropy is ℍ(Δh) =
1
2 log2(2πe σ

2
h). To show that the volume in terms of the

differential entropy of the Gaussian distribution can be
matched to the uniform distribution used in Eq. 28, we cal-
culateσh by the definition of the differential entropy. Then,
for σh = 12.16 µm and independent of the mean, the differ-
ential entropy is alsoℍ(Δh) = −14.28 bits.
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Table 1: Comparison of the mutual information provided by different measurement schemes using a Michelson inter-ferometer (phase shift)
and temporal sampling with monochromatic light. Simulation for λ = 500 nm, σn = 0.1 and a Normal distribution Δh ∼ N(0, σh) of the step
height with σh = 20 or 80 nm.

Measurement scheme, monochromatic light
Parameters phase shift temporal sampling

phase- or τ-shift ϕ = 0 ϕ = π/2 ωτ = π/2 ωτ = {−π/2, π/2} ωτ = {0, π/2}
number of measurements 1 1 1 2 2

σh in nm Results
20 mutual Information in bits 0.721 2.167 2.167 2.774 2.486
80 mutual Information in bits 2.422 2.449 2.449 3.001 4.024

3.3 Temporal sampling

3.3.1 Information content for the case of monochromatic
light

Here we consider the case of measurements using the
Michelson-Interferometer setup described in Fig. 1 with
monochromatic light and compare how informative this
approach is with respect to the step height Δh of the mea-
surement object. In this case, the intensity at the detector
is given by Eq. 8. After trivial processing we can define an
idealized measurement function by

M(Δh) = cos(2k Δh + ϕ) + ϵ , (30)

where ϕ is a phase offset between the object and the ref-
erence wave and ϵ ∼ N(0, σn) is the measurement error
described as a mean-free normal distribution N . Taking a
single measurement through M then gives a single one-
dimensional measurement I = {I0} determined by a prob-
ability density function given by the transformation of pΔh
throughM plus the Gaussian distributed error.

As follows from the discussion of Eq. 3, the phase shift
ϕ given in Eq. 30 corresponds to a time shift τ = ϕ/ω.
Choosing a set of values τi = ϕi/ω with i = 0 ... n − 1 there-
fore allows to scan along the τ-axis. In order to define a
measurement process, we sample at the times τ0, . . . , τn−1
giving nmeasurements I = {I0, I1, . . . , In−1} by
M(Δh) = {cos(2k Δh−ωτ0)+ϵ0, ⋅ ⋅ ⋅ , cos(2k Δh−ωτn−1)+ϵn−1} ,

(31)
where τi are the different sampling points and ϵi ∼ N(0, σn)
is the independent measurement error of each sample.
Note that this process is termed phase shifting in interfer-
ometry and allows to expand the unambiguity range of the
measurement by a factor of 2 to λ/2 in comparison to a sin-
gle measurement as described in Section 2.1. The transfer
of information should therefore be increasedbyusingmul-
tiple phase or τ-shifts as compared to a fixed value.

To highlight the limitations of monochromatic inter-
ferometry, firstly we analyze Eq. 30 for the case of a uni-
form distribution of Δh with hmax − hmin = 50 µm and
λ = 500nm. The mutual information can be obtained by
numerical calculation. More precisely we use 220 random
samples fromΔhand the transformationM(Δh) to estimate
the joint probability density function of the (Δh,M(Δh)).
The empirical joint probability (and its marginal) is used
to compute numerically differential entropy and then the
mutual information using Eq. 26. We find that it is almost
negligible at I(G; I) = 0.145 bits since there is a very large
ambiguity in the estimation of Δh, as described by Eq. 9.
We will see in Sec. 3.3.2 that this ambiguity can be solved
by using polychromatic light. When Δh in confined to a
much smaller range, the measurements provide more in-
formation. For example, when hmax − hmin = 100nm the
mutual information is I(G; I) = 4.181 bits for σn = 0.025
and decreases to I(G; I) = 2.386 bits when σn = 0.1 due to
the increased noise.

Now we compare the mutual information provided by
several measurement schemes with monochromatic light,
firstly using a Michelson interferometer (phase shift) and
secondly with temporal sampling. The results are com-
piled in Tab. 1.

First,weuse aNormal distributionΔh ∼ N(0, σh)of the
step height with σh = 20 nm. Further on, the width of the
distribution of the measurement error as defined in Eq. 30
is σn = 0.1. Since M is normalized, σn is dimensionless.
For these set of parameters, the main uncertainty there-
fore comes from the measurement errors, but not from the
ambiguity associatedwith usingmonochromatic light. For
the Michelson interferometer, the mutual information be-
tween the Δh and the measurements depends on ϕ and
lies in the range of 0.721 bits for ϕ = 0 and 2.167 bits for
ϕ = π/2. In case of the temporal sampling, one single
sampling point should produce the same results than the
Michelson-Interferometer. The simulations corresponding
to ωτ = π/2 are 2.167 bits, which agrees with the expected
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results. Further on, the mutual information increases with
two temporal samples. The actual gains depend of the
sampling schema; in this particular experimental setting
the best results are obtained for ωτ = {−π/2,π/2} that pro-
duces 2.486 bits. This experiment illustrates that sampling
of the τ-axis as in Eq. 31 allows to increase the mutual in-
formation.

Next, we repeat the previous experiment but increase
the standard deviation of the step to σh = 80nm. The re-
sults confirm the previous observation regarding the im-
provement in the mutual information as the number of
temporal samples increases. In this case, however, the im-
provement is larger (4.024 bits versus 2.449). It is interest-
ing to note that the optimal samplingpoints are dependent
on the problem: in the previous example the samplings
ωτ = {− π2 ,

π
2 } were optimal, while in the current case ωτ =

{0, π2 } works better. The selection of a proper sampling
schema thus plays an import role to increase the informa-
tion gained from temporal samplingusingmonochromatic
light.

3.3.2 Information content for the case of polychromatic
light

Now we consider the case of measurements using the
Γ-Profilometry setup described in Fig. 2 with polychro-
matic light. In this case, the measurement is a function of
τ given by Eq. 18 and results in an idealized measurement
function

M(Δh) = {cos [ω(τi −
2Δh
c
)]

⋅ exp [− 1
2
(τi −

2Δh
c
)
2
Δω2] + ϵi, ⋅ ⋅ ⋅}

for i ∈[0, ⋅ ⋅ ⋅ , n − 1], (32)

where each of the single measurements corresponds to a
different τ-sampling.

As shown in the previous section, the sampling
scheme has an important impact in the achievable mu-
tual information. To keep the discussion simple and eas-
ily comparable to WLI, we use a uniform τ-scan with
512 points, although more optimal sampling schemes are
likely to exist. Further, we determine the value of τi that
maximizes R(Γ(Δh − cτ

2 )) and use this value as the result
of the measurement. Such a procedure corresponds to the
well known WLI. Note that by using this simple approach
wemay be limiting the full benefit of using the Γ-function.

As an example, we consider the case of a uniform dis-
tribution of Δh with hmax − hmin = 50 µm and λ = 500nm

and assume a coherence length of lc = 20 µm for the poly-
chromatic light. The results are compiled in Tab. 2. Recall
from the previous Section 3.3.1 that the use of monochro-
matic light for this case provides a mutual information
of just I(G; IK) = 0.145 bits. For 512 repeated measure-
ments one obtains an only slightly improved mutual in-
formation of 0.178 bits. However, when using polychro-
matic light, we observe that the ambiguity present in the
monochromatic case disappears and the mutual informa-
tion increases dramatically. For example, the mutual in-
formation I(G; IK) = 3.85 bits for σn = 0.1 and increases
to 4.78 bits for σn = 0.025. Temporal sampling using poly-
chromatic light avoids measurement ambiguities encoun-
teredwithmonochromatic light and thus provides a signif-
icant increase in information content to recover the origi-
nal step height.

Table 2: Comparison of the mutual information provided by different
measurement schemes using temporal sampling with polychromatic
light and monochromatic light. Example for Δh ∈ [−25 µm, 25 µm],
λ = 500 nm coherence length lc = 20 µm and noise σn = 0.1.
Parameters and results Measurement scheme
width of distribution of
measurement error σn

monochromatic polychromatic
0.1 0.1 0.1 0.025

number of measurements 1 512 512 512

mutual Information in bits 0.145 0.178 3.85 4.78

3.4 Spatio-temporal sampling

In this section we show that from the perspective of infor-
mation theory the correlation of two object points is supe-
rior to the correlation of the object with a reference wave,
even in the simplistic case outlined there. For this purpose,
we investigate the benefit of spatio-temporal sampling as
is possible with the concept shown in Fig. 5 that allows us
to sample any point of the spatio-temporal space of Fig. 3.
This simple example points towards the large potential,
which is hidden in the coherence function, waiting to be
lifted.

In order to demonstrate the full potential of spatio-
temporal sampling, we now extend the measurement to
further steps on the sample as indicated by further points
xn in Fig. 4(a). For the following calculations we consider
a surface profile consisting of R different steps.We assume
that each individual step has a typicalmagnitude of Δh but
presents some variations.

One example of this scenario would be the charac-
terization after production of a diamond turned specu-
lar surface used for example in [2] as a reference. Each
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step is produced to have a given height, e. g. 50 µm. Dur-
ing production the height of the steps may, however, have
some variations that need to be measured to ensure that
they are within the limits of e. g. λ/20. We assume the use
of polychromatic light as described in the previous Sec-
tion 3.3.2 and compare the information provided by sam-
pling τ compared to the Γ-sampling approach that we pro-
pose in this paper. Our goal is to determine if the use of
spatio-temporal sampling (instead of just temporal sam-
pling) can indeed improve the information transferred by
the measurements.

Firstly we compare the number of measurements re-
quired by the two approaches from a qualitative point of
view. In the case of WLI, the interference is obtained us-
ing a reference wave. Thus, a typical sampling approach
would require to sample uniformly in the temporal do-
main, where the sampling range is proportional to the to-
tal height of the object, i.e, R ⋅ 50 µm. The sampling reso-
lution determines the quality in the estimation of the en-
velope, and thus, the accuracy of the measurement. Note
that the interference image obtained for each of the tem-
poral sampling points provide a very reduced amount of
information: the information is restricted to the single step
of the object whose optical path is close to that of the refer-
ence wave. This limitation contrasts dramatically with the
rich information provided by Γ-Profilometry. Here, by set-
ting the shear parameter to one or more values suitable to
obtain an interference image detailed information is pro-
vided for each of the individual steps. While the range of
the temporal sampling is givenby the variability of the step
height instead of the total height of the object, the number
of required shears provided by Γ-Profilometry depends on
the number of steps R and their lateral distance. In the fol-
lowing, we will obviate this already substantial advantage
and assume that the number of optical measurements re-
quired to obtain an estimation of a length is the same for
WLI and Γ-Profilometry.

To model both methods we consider the case of four
steps, R = 4, with a nominal step height of 50 µm, a stan-
dard deviation of the step height of 1 µm due to manufac-
turing tolerances. For the sake of comparabilitywe assume
a Gaussian distributedmeasurement error of σm = 200nm
in both cases, althoughWLI is currently further developed
than Γ-Profilometry. The error σm results from an estima-
tion of the difference of heights in two points usingWLI or
Γ-Profilometry with only sampling in τ-direction. Results
provided for different measurements schemes correspond
to one and twomeasurement batches. Each batch contains
512 measurements. Note that in most practical measure-
ment setups for WLI, the fact that a reference wave travels
a different path than the measurement wave causes larger

errors than in the case of Γ-Profilometry that uses a com-
mon path principle with all waves having a similar path.
To be conservative, we assume that the accuracy provided
by WLI and Γ-Profilometry is equal.

The mutual information provided by several illustra-
tive sampling schemes is reported in Tab. 3. The WLI ap-
proach that estimates the absolute location of the 4 steps
provides an information of 5.783 bits while Γ-Profilometry
using one shear provides a higher information content of
6.239 bits. Further on, if we allow two batches of measure-
ments, the WLI measures 2 times each one of the abso-
lute positions providing an information of 6.838 bits,while
Γ-Profilometry achieves 7.325 bits for the same number of
measurements. Here it becomes apparent that the possi-
bility of combining temporal and spatial sampling has in-
deed the potential of providing better measurements. It is
interesting to note that including the results for one and
two shears provides more information than repeating the
measurement twice using one shear. The flexibility pro-
vided by combining the temporal and spatial sampling is
thus essential.

Table 3: Comparison of the mutual information provided by White
Light Interferometry (WLI) and Γ-sampling when measuring a 4-step
object with steps of 50 µm height, a standard deviation of the step
height of 1 µm due to manufacturing tolerances and a measurement
error of σm = 200 nm. Results provided for different measurement
schemes correspond to one and two measurement batches. Each
batch contains 512 measurements.

Parameters and results Measurement scheme,
polychromatic light
WLI Γ-sampling

number of τ-scans 1 2 1 2 1
number of ⃗s-scans – – 1 1 2
number of measurement batches 1 2 1 2 2

mutual information in bits 5.783 6.838 6.239 7.267 7.325

4 Methods for efficient data
collection and evaluation

This section illustrates hownovel techniques such as Com-
pressed Sensing (CS), Machine Learning (ML) and local
pre-processing using Vision Systems on Chips (VSoCs) can
be used to efficiently address the concept of Γ-Profilometry
startingwith the imaginghardware followedby the optical
measurement scheme to the estimation of arbitrary object
parameters.
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4.1 Efficient sampling

The Γ-function offers a promising way to collect a maxi-
mum amount of information about the measured object.
However, it is still unclear how the sampling of the τ-s
space should be optimized for a given geometry or object
structure. In the presented example a clear maximum of
information has been pointed out, but in general this is
unknown. Recent literature shows that sampling in the
classical sense (i. e. Whittaker-Shannon-Kotelnikov sam-
pling) is often wasteful and unnecessary, if knowledge
about the structure of the problem is available. For exam-
ple, the spatio-temporal Fourier transform of Γ(τ, ⃗s) leads
to Γ̃(ω, k⃗), which is sparse in many situations.2 The spec-
trum can often be approximated by only a few frequen-
cies ωn while the structure of natural surfaces often lead
to sparse Fourier representations in k⃗-space. Compressed
Sensing (CS) [12] is a prominent sampling technique that
explicitly exploits sparsity in a known basis to reduce the
number of samples by randomized sampling. CS seems a
promising method particular in this case, because the re-
alization of random sampling strategies in the optical do-
main can be realized through a random selection of shears
⃗s and delays τ according to the measurement setup de-
scribed in Fig. 2.

Additionally, adaptive measurement systems may be
required to automaticallyminimize the number of samples
through intelligent search in the τ-s space. In simple cases,
this is akin to a gradient search maximizing the informa-
tion content. While seemingly simple, this approach re-
quires a valid estimation of said information content with
a very limited amount of samples. For complex objectsMa-
chine Learning (ML) seems like a promising approach to
adapt the sampling, but also depends on the availability
of data. Machine learning with small data samples is a hot
topic in current research [13].

4.2 Estimation methods

Casting the measurement problem from a probabilistic
viewpoint is useful beyond the application of information
theory. The field of signal processing offers a wide vari-
ety of estimation methods that are based on the Bayesian
point of viewwith varying degrees of knowledge about the
structure of the estimation problem in the form of statis-
tical priors (e. g. a Gaussian distribution of the step size

2 As Γ̃ depends on temporal and spatial frequency, it should not be
confusedwith the spectral density of Eq. 11 that depends on temporal
frequency and spatial coordinates.

due to production processes). A very flexible way of cast-
ing problems is variational inference, where knowledge
about an object can be formulated by families of probabil-
ity functions and several hyperparameters that are learned
along the estimation [14]. That way knowledge like it is as-
sumed in our article (unitary or Gaussian distribution of
Δh) can be further relaxed and adapted to the measure-
ment problem at hand.

Furthermore, modern machine learning methods are
often targeting the maximization of information theoreti-
cal measures to optimally tune deep neural networks for
classification and estimation problems. Connections to in-
formation theory and various approaches from signal the-
ory are still under heavy investigation, but the current
state of the art shows that the inner workings of deep neu-
ral networks canbe capturedby information theoretic con-
cepts [15].

4.3 Efficient hardware using vision systems
on chips

In conventional systems, image acquisition and process-
ing are not only logically but also physically separated.
This separation, that limits the speed [16] and possibly
also the accuracy of the measurement, represents a major
bottleneck for a metrology system using the Γ-Function. A
holistic approach that integrates optical detection and in-
formation processing is required. On the one hand, there
is a notable increase in the volume of raw data since the
Γ-Function has seven orthogonal dimensions that can be
sampled; on the other hand, there is an increase in the
processing demands because of the more complex decod-
ing of the information intrinsic in the interpretation of the
Γ-Function. Even worse, those requirements of data pro-
cessing increase even further when on-line adaptive sam-
pling methods are required, as the ones previously dis-
cussed. This significant increase in requirements demands
the use of dedicated hardware architectures.

A promising alternative are Vision-Systems-on-Chip
(VSoCs) [17]. They allow the integration of pre-processing
close to the image detectors and enable a processing time
several orders ofmagnitude faster than conventional tech-
niques [16]. Furthermore, the integrateddedicated on-chip
hardware accelerators can provide significant improve-
ments in performance. In particular, the data processing
required for the Γ-Function exhibits intrinsic large paral-
lelism that can be efficiently exploited by dedicated mas-
sively parallel hardware architectures, a currently done
for image processing [16]. Furthermore, since the accuracy
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requirements in the different processing stages are non-
uniform, the dynamic reconfiguration of computational
accuracy offers significant potential to adapt to changing
requirements.

5 Conclusions and outlook

We have presented here a first comparative investigation
of the information content of interferometrical measure-
ments for a simplified case of shape measurements using
optical metrology. The combined view of optical metrol-
ogy and information theory given in this paper demon-
strates that spatio-temporal sampling based on the Γ co-
herence function enables higher information gain as com-
pared to wave field reconstruction solely using temporal
or spatial reconstruction by techniques such as classical
Michelson or White Light Interferometry (WLI) or Compu-
tational Shear Interferometry (CoSI).

In order to efficiently sample the high dimensional pa-
rameter space of the Γ-function, efficient sampling strate-
gies are required. Compressed sensing (CS) using random
sampling and gradient searchmethodsmay be used to ob-
tain an efficient path to an optimum solution while ma-
chine learning (ML) based on small data sets and prior
knowledge may be used to identify solutions in accord to
prior knowledge about the structure of the object under in-
vestigation. The details of such procedures are a central
subject of further work.

While the presented work is focused on shape mea-
surements, the fundamental concept has a promising per-
spective to be applied also to surface roughness measure-
ments [18]. Optical roughness measurements by means of
auto- or cross-correlating the scattered light images from a
coherent illumination are well known [19, 20], but only a
single roughness parameter is typically measurable such
as the root mean square Sq of the surface height distri-
bution. The coherence function provides the appropriate
starting point to design a new or to rethink existing mea-
surement principles to maximize the accessible informa-
tion on the surface roughness with coherent light scatter-
ing.

It is further noted that the structure of the coherence
function which is basically a correlation, already appears
in several state-of-the-artmeasurement techniques. For in-
stance, a cross-correlation of the intensity values from im-
age pairs is used in Particle Image Velocimetry (PIV) [21] to
determine themotion of particles in flows, inDigital Image
Correlation (DIC) [22] as well as in Digital Speckle Photog-
raphy (DSP) [23] tomeasure surfacemovements and defor-

mations. The reader interested in an information theoretic
perspective on these principles is referred to [24–26].

As a consequence of the considerations given here,
applying the Γ-function has the potential to significantly
boost the accessible informationwith respect to a great va-
riety ofmeasurement tasks in the areaof opticalmetrology.

Funding: Gamma-Profilometry, Grant No. 265388903, at
BIAS and SFB/TRR 136 project C06 at BIMAQ both funded
by the Deutsche Forschungsgemeinschaft (DFG).
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